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Abstract

Several agents that activate brain histaminergic neurotransmission have been reported to improve 
methamphetamine (METH)-induced behavioral aberrations. In this review, we present research 
demonstrating that pretreatment with metoprine, a selective inhibitor of histamine N-methyltransferase 
(HMT), attenuates the reinforcing effects of METH in mice. Pretreatment with metoprine decreased 
METH-induced reinforcement as evaluated in the conditioned place preference (CPP) test. Metoprine 
pretreatment alone produced an increase in the CPP score with the same score level as that observed 
in mice treated with METH plus metoprine. No changes in alternation behaviors or numbers of marbles 
buried were observed in metoprine-treated mice measured in the Y-maze test and in the marble burying 
test, respectively. The locomotor activity was augmented after metoprine administration. These 
observations suggest that metoprine alleviates METH-induced rewarding property and hyperlocomotion. 
Metoprine is likely to augment spontaneous locomotor activities without mood alterations or short-term 
memory impairment. Brain histaminergic system is a new hope for treatment of METH dependence.

Review Article

How the histamine N-methyltransferase 
inhibitor metoprine alleviates 
methamphetamine reward

Nobue Kitanaka1, Junichi Kitanaka1*, 
F Scott Hall2, Satoshi Okumura1#, 
Tomoyuki Sakamoto1#, George R Uhl3 
and Motohiko Takemura1

1Department of Pharmacology, Hyogo College of 
Medicine, Nishinomiya, Hyogo, Japan
2Department of Pharmacology and Experimental 
Therapeutics, College of Pharmacy and 
Pharmaceutical Sciences, University of Toledo, 
Toledo, OH, USA
3Offi  ce of Research & Development, New Mexico VA 
Healthcare System/BRINM, Albuquerque, NM, USA
#These authors contributed equally to this study 
as medical students participating in an orientation 
course for medical sciences (2014) held in the 
Department of Pharmacology, Hyogo College of 
Medicine

Dates: Received: 02 May, 2017; Accepted: 11 May, 
2017; Published: 12 May, 2017

*Corresponding author:  Junichi Kitanaka, 
Department of Pharmacology, Hyogo College 
of Medicine, 1-1 Mukogawa-cho, Nishinomiya, 
Hyogo 663-8501, Japan, Tel: 81798456333; Fax: 
81798456332; E-mail: 

Keywords: Methamphetamine; Drug addiction; 
Reward; Histaminergic system; Metoprine; 
Histamine N-methyltransferase

https://www.peertechz.com

Introduction

Methamphetamine (METH) is a highly addictive 
psychomotor stimulant drug that is abused worldwide [1]. 
METH abuse results in numerous adverse effects after acute 
administration, as well as an array of adverse outcomes 
associated with binge use, long-term use, and withdrawal [2-
4]. Acutely METH releases dopamine from synaptic terminals 
through multiple actions that include inducing reverse transport 
of dopamine via the dopamine transporter (DAT), impairing the 
function of the vesicular monoamine transporter-2 (VMAT2), 
leading to increased cytoplasmic dopamine concentrations, 
and inhibition of monoamine oxidase [5-8]. Moreover, these 
changes contribute to the production of oxidative metabolites, 
metabolic impairments, oxidative damage to dopamine 
terminals, and depletion of tissue dopamine levels [9-11]. 
METH and related drugs consequently produce broad effects 
on the central nervous system both acutely and chronically 
[12-14]. 

Due to its highly addictive properties, and the adverse 
consequences associated with acute and chronic use of METH, 

effective treatments for METH dependence are needed. 
Unfortunately, various attempts at pharmacotherapy trials 
have yielded unpromising and inconsistent results with 
medications developed to date [15-17]. Several novel alternative 
approaches have been a matter of intense investigation more 
recently, including dopamine D3 receptor antagonists and 
partial agonists [18], and manipulations of brain histamine 
systems [19]. The later possibility is addressed in this report.

Based on a variety of fi ndings, an increasing amount 
of scientifi c attention has been focused recently on the 
histaminergic system with respect to its potential roles in the 
causes and treatment of psychotic disorders, drug addiction/
abuse, and other psychiatric conditions. Content of the 
histamine metabolite tele-methylhistamine is increased in 
the cerebrospinal fl uid of schizophrenic patients as compared 
with healthy control subjects [20]. Dysfunction of the 
histamine-forming enzyme histidine decarboxylase (HDC) 
has been suggested to contribute to Tourette’s syndrome in 
humans, with similar phenomena observed in mouse models 
[21]. Moreover, based upon the positioning of histamine H3 
receptors in neural circuits infl uencing dopaminergic and 
striatal function, histamine H3 receptor antagonists have been 
investigated as potential anti-psychotic drugs [22-24]. In 
addition, brain histaminergic neurons have been suggested to 
infl uence amphetamine reinforcement, which was reduced by 
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lesion of histaminergic neurons [25]. In this review, we will 
examine other recent evident suggesting that histamine may 
have a role in drug reinforcement and addiction. The work 
that will be discussed will deal mainly with the relationship 
between alterations in brain histamine content and METH-
induced behavior in animal models.

Brain histaminergic system

In the body histamine is synthesized by the decarboxylation 
of the amino acid L-histidine in a reaction catalyzed by HDC 
(EC4.1.1.22) and is stored mainly in mast cells, basophils, and 
neurons. Although a great deal of the histamine content of the 
brain comes from mast cells, histaminergic neurons in the 
brain are found solely in the tuberomamillary nucleus located 
in the posterior hypothalamus, but send projections throughout 
much of the central nervous system [26-28]. Regarding 
the function of histamine as a neurotransmitter, there are 
several important aspects of histamine neurotransmission 
that are important for understanding the role of histamine in 
brain function. (1) Aspects of histamine release are different 
from other monoamines. Depolarization releases neuronal 
histamine in the same fashion as other monoamines (i.e. 
dopamine, norepinephrine, and serotonin) [29-31], but the 
levels of extracellular histamine released are at most twice 
basal levels [30,31]. In contrast to histamine, other monoamines 
reach extracellular levels after neuronal depolarization-
dependent releases that are several hundred-fold basal levels. 
(2) Aspects of histamine transport are different from other 
monoamines. There is no evidence for “histamine specifi c 
transporter” responsible for histamine clearance [32], as is 
the case for the other monoamine transporters, although 
histamine levels in the synaptic cleft return to a basal levels 
after stimulation [33,34]. The organic cation transporter 3 
(SLC22A3), previously called the extraneuronal monoamine 
transporter, is believed to maintain tissue histamine levels 
[35-37]. Concentrations of monoamines are regulated by SLC6 
type high-affi nity monoamine transporters [38], including 
DAT (SLC6A3) [39-41], the serotonin transporter (SERT; 
SLC6A4) [42-44], and the norepinephrine transporter (NET; 
SLC6A2) [45,46]. Despite current limitations in our knowledge 
of brain histamine dynamics, histamine is believed to be 
released from presynaptic vesicles by stimulation, and bind 
to histamine receptors located on postsynaptic (subtypes 
H1-H4) and presynaptic (mainly H3) membranes [47-50]. 
Histamine receptors are thought to have crucial roles in many 
physiological functions, including the sleep-wake cycle, 
food intake, neuroendocrine regulation, cognition, and drug 
reinforcement [51-54]. Histaminergic neurotransmission 
is terminated by metabolic inactivation of histamine by a 
histamine degrading enzyme histamine N-methyltransferase 
(HMT; EC2.1.1.8) [55]. Both HMT mRNAs and HMT protein-
like immunoreactivity are located predominantly in the central 
nervous system [56-58]. HMT is considered to be the primary 
mechanism of histamine metabolism in brain, while histamine 
is metabolized by diamine oxidase (histaminase; EC1.4.3.6) in 
peripheral tissues [47,59]. Metoprine (2,4-diamino-5-(3’,4’-
dichlorophenyl)-6-methylpyrimidine) is an HMT inhibitor 
[60], which was originally developed as an anticancer drug 

[61]. Metoprine easily crosses the blood-brain barrier when 
administered systemically [62] and increases tissue histamine 
content [63-68]. The involvement of central histaminergic 
systems in the behavioral and psychological effects of METH 
dependence can thus be investigated in using metoprine.

METH-induced behavior and metoprine

Acute METH administration releases histamine in the 
hypothalamus [69], and increases tissue histamine content 
[70]. The physiological relevance of METH-induced histamine 
release is unknown, but two possibilities might account for the 
signifi cance of histamine release. Firstly, histamine released 
by METH might be associated with METH-induced behavior. 
This would be the most obvious view of the relationship 
between METH and histamine function. However, some 
evidence suggests otherwise. For instance, in histamine-
defi cient mice METH-induced hyperlocomotion and behavioral 
sensitization are augmented as compared with wild-type 
mice [71]. Alternatively, it might be suggested that histamine 
release is a part of a compensatory mechanism that restrains 
METH behavioral responses, limiting METH effects and the 
development of some chronic adaptations to METH such as 
sensitization. A failure of homeostasis in the brain resulting 
from reduced METH-induced histamine release may contribute 
to development of aberrant behaviors associated with chronic 
METH administration. If this is the case, it might be possible 
that these behaviors might be improved by increasing brain 
histamine levels pharmacologically.

There is some evidence, that high-dose METH-induced 
behaviors are reduced by agents which increase brain histamine 
content. L-histidine, a precursor for histamine synthesis, 
crosses the blood-brain barrier with a low Km value [72] and is 
converted to histamine by HDC in the brain, increasing tissue 
histamine content [67,73]. Pretreatment with high doses of 
L-histidine attenuates METH-induced hyperlocomotion [64], 
behavioral sensitization [74,75], and stereotyped behavior 
[73,76,77]. The HMT inhibitors metoprine and the dimaprit 
analogue SKF 91488 (S-[4-(N, N-dimethylamino)butyl]
isothiourea) increase tissue histamine content by inhibiting 
HMT [63-68,78], and these agents attenuate METH-induced 
stereotypy [63]. In line with these observations, it is likely that 
the increase in the tissue histamine contents might improve 
aberrant behavior observed at high METH doses, as exemplifi ed 
by stereotypy and sensitization. This hypothesis is supported 
by evidence that METH-induced behaviors are exacerbated 
when histaminergic neurotransmission is suppressed by 
pharmacological [70] or genetic [71] manipulations.

Although this evidence supports a role for histamine 
in counteracting some of the behaviors observed after 
administration of high METH doses, it has not been determined 
whether effects observed at low METH doses, such as the 
rewarding and reinforcing effects, are similarly affected. To 
address this question, we examined the effect of metoprine 
pretreatment on METH-induced CPP in mice. In CPP testing, 
mice are initially presented with a testing apparatus that 
has two or three distinctive compartments (distinctive in 
terms of visual and tactile cues). Mice are allowed to explore 
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the compartments and the preference to each department 
is determined over 1-3 sessions. Ideally the preference for 
the compartments is approximately equal, although pairing 
with the less-preferred side is also effective (see review by 
Tzschentke [79] for a discussion of this issue). Subsequently, 
mice are confi ned to one of the compartments and receive an 
injection of a test drug (such as METH) in one compartment and 
saline in another compartment. After a series of such pairings 
over several days, preference is assessed again. An increase 
in preference refl ects the positively reinforcing effects of the 
drugs, indicative of drug reward, while a decrease in preference 
refl ects avoidance, indicative of aversive drug effects. Using 
this procedure mice readily develop a conditioned place 
preference for METH after 3 pairings with 0.5 mg/kg METH i.p. 
[80]. During the test locomotor stimulant effects of METH can 
also be measured.

Metoprine alone can produce locomotor stimulation, 
depending on dose [63,66], and thus might also be speculated 
to have some reinforcing effects when administered alone. In 
order to look at the potential interactive effects of modulating 
histamine with metoprine on METH reinforcement, mice were 
fi rst examined in a modifi ed conditioning procedure. Mice 
received only a single injection of METH (0.5 mg/kg, i.p.) 
during a single conditioning session (and one saline injection 
in the opposite compartment in a second session). Mice were 
then given a CPP test the following day, followed by a second 
test 5 days later. Control mice received saline injections during 
both training sessions. As shown in (Figure 1A), even a single 
METH injection produced signifi cant CPP. This preference 
was reduced, but still signifi cant, 5 days later. A second group 
of mice were pretreated with metoprine (10 mg/kg, 1.p.) or 
saline, 1 h before METH conditioning (again control subjects 
received saline injections). The main fi nding of this study is 
that a pretreatment with metoprine reduced METH-induced 
CPP (Figure 1B). The result suggests that behavioral effects 
produced by relatively low doses of METH are reduced by 
activation of brain histaminergic systems. However, at the 
same time metoprine induced CPP when administered to 
control mice, suggesting that it may have reinforcing effects 

of its own. Nonetheless, the data is consistent with a potential 
inhibitory effect of brain histaminergic activation, as shown by 
metoprine pretreatment on METH-induced CPP. In any case 
further investigation is warranted.

The extent to which such effects may represent specifi c 
effects of histaminergic modulation of METH reinforcement, 
or whether histaminergic modulation may affect drug 
reinforcement more generally, is also open to question. At 
least some data suggests that there may be broader effects of 
histamine modulation on drug reinforcement. The H1 receptor 
antagonist chlorpheniramine can produce leftward shifts in the 
dose response curves for METH and cocaine CPP [81], although 
it must be noted that this drug also has effects on NET and 
SERT [82]. However, more selective histamine antagonists 
have been shown to affect morphine antinociception [83], 
conditioned place preference [84], and drug discrimination 
[85,86]. Moreover, L-histidine attenuated, while a histidine 
decarboxylase inhibitor potentiated, morphine CPP [84], 
similar to the effects observed for METH that were discussed 
previously. In non-human primates histamine antagonists can 
also be reinforcing alone or in combination with other drugs of 
abuse [87-91], although this may not be the case for selective 
H3 antagonists [92]. Indeed, selective H3 antagonists have been 
shown to reduce reinstatement of ethanol-seeking behavior 
during a reinstatement procedure after responding has been 
extinguished [93]. However, H3 antagonists have also been 
reported to potentiate METH self-administration and METH-
stimulated dopamine release [94], so the role of this receptor 
in different aspects of drug reinforcement, as well as other 
effects of drugs of abuse, is not yet clear.

Other metoprine effects

As mentioned above, mice and rats exhibit hyperlocomotion 
after metoprine administration [63,66], and these effects are 
dose-dependent [63]. This hyperlocomotion exhibits a bell-
shaped dose-response curve, typical of many psychostimulant 
drugs. This is also similar to the effects of exogenously 
administered histamine on hyperlocomotion [95], effects 
thought to involve modulation of striatal dopamine function. 
This dose-response relationship suggests that different effects 
of elevating histamine levels emerge at low and high doses. 
The nature of these effects remains to be fully elucidated.

Other data suggests that there may be additional effects 
of metoprine-mediated histamine stimulation, on other 
spontaneous behaviors that might infl uence measures of drug 
reinforcement or hyperlocomotion, including perhaps effects 
on cognition. Histaminergic modulation is well-established to 
infl uence aspects of cognition [96,97], although much of this 
work is based upon studies with histamine antagonists. With 
regard to metoprine, however, in the Y-maze the number of 
spontaneous alternations were not different after treatment with 
metoprine (10 mg/kg) administration (Figure 2A), suggesting 
that metoprine did not affect the memory functions associated 
with this test. This behavior was unaffected by metoprine 
despite the presence of hyperlocomotion. This locomotion 
occurred even after administration of pyrilamine (10 mg/kg), 

Figure 1: (A) A single injection of METH (0.5 mg/kg, i.p.) induces CPP. CPP was 
signifi cant even 5 days after the CPP test day. Values are shown as the mean ± 
SEM (n = 12). *P < 0.05, compared with saline/saline-conditioned mice; †P < 0.05, 
compared with CPP test day. (B) Effects of metoprine (10 mg/kg, i.p.) pretreatment 
on METH-induced CPP. Values are shown as the mean ± SEM (n = 12). *P < 0.05, 
compared with saline/saline-treated mice; †P < 0.05, compared with METH/saline-
treated mice (post hoc Bonferroni/Dunn test). METH, methamphetamine.
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a histamine H1 receptor antagonist (Figure 2B), suggesting 
that released histamine after metoprine administration might 
bind to histamine receptor subtypes other than the H1 subtype. 
Metoprine is reported to exhibit an anxiogenic-like effect in 
mice as measured by the light/dark box test [98], although 
there are contradictory results as measured by the elevated plus 
maze test [63]. However, in the marble burying test, we found 
that metoprine did not have an anxiolytic-like profi le (Figure 
3). In addition, metoprine did not induce aggressive biting 
behavior (Figure 4A) as evaluated in the Aggression Response 
Meter (ARM) described previously [99], but metoprine induced 
hyperlocomotion even inside the animal chamber of the ARM 
(Figure 4B). Although, certainly examination of metoprine 
effects in other tests of anxiety and cognition are warranted, 
these initial investigations suggest that metoprine is not likely 
to augment spontaneous locomotor activity due to effects on 
anxiety or short-term memory function. These initial fi ndings 
are therefore encouraging in that they suggest that metoprine 
may not cause side effects or toxicity at behaviorally relevant 

doses that would limit its utility as a potential approach to 
reducing METH-induced behaviors, which may potentially 
include those related to the reinforcing effects of METH, or 
those producing aberrant behavior at higher doses. This profi le 
is further improved by the observation that HMT inhibitors 
activate central, but not peripheral, histaminergic systems so 
that these compounds are good candidates for evaluation as 
medications for the treatment of METH abuse and dependence.

HMT inhibitors as a new potential approach for the 
treatment of METH dependence

As argued in the preceding pages, modulation of 
histaminergic function may affect METH-induced behavior, 
including behavior relevant to METH abuse and METH 
dependence. In further support of this hypothesis, we have 
found that pretreatment with agmatine (decarboxylated 
L-arginine) attenuates METH-induced hyperlocomotion 
and stereotypy [100]. Agmatine is an endogenous cationic 
polyamine synthesized after decarboxylation of L-arginine by 
the enzyme arginine decarboxylase (EC4.1.1.19). As a possible 
neuromodulator in the brain, it binds to several receptors 
including the imidazoline I1, 2-adrenergic, and N-methyl-
D-aspartate (NMDA) glutamate receptors [101-103]. However, 
of relevance to the present discussion, we have found that 
agmatine increases the tissue content of histamine in the 
hypothalamus (Figure 5A), but only in mice treated with 
METH. The histamine metabolite tele-methylhistamine was 
not affected (Figure 5B). Although the underlying mechanism 
is not clear at present, this data suggests that the inhibitory 
effect of agmatine on METH-induced hyperlocomotion 
and stereotypy may depend on the activation of the brain 
histaminergic systems.

Collectively, the data presented here supports the idea that 
augmentation of brain histamine content may limit behavioral 
effects of METH that may be relevant to METH abuse and 
dependence. This idea certainly needs further investigation, 
particularly given the, at times, inconsistent effects of 
histamine antagonists. However, one fi nal encouraging 
fi nding is that deletion of histamine H3 receptor genes 
attenuates METH-induced hyperlocomotion [104], consistent 
with our observations that elevating brain histamine function 
reduces METH effects [63,73], supporting the idea that 
activation of brain histamine systems may be a good strategy 

Figure 2: The effects of metoprine on spontaneous alternation behavior (A) and 
the total number of arm entries (B) in the Y-maze. Metoprine (and/or pyrilamine, a 
histamine H1 receptor antagonist) was injected i.p. at a dose of 10 mg/kg. Values 
are shown as the mean ± SEM (n = 8). *P < 0.05, compared with vehicle- and saline-
treated mice (post hoc Bonferroni/Dunn test).

Figure 3: Effects of metoprine on marble burying behavior in mice. Values are 
shown as the mean ± SEM (n = 4 or 8).

*

Figure 4: Intensity of aggressive biting (A) and number of turning around inside 
the animal chamber (B) after drug administration in mice. Values are shown as the 
mean ± SEM (n = 3 or 4). *P < 0.05, compared with saline-treated mice (post hoc 
Bonferroni/Dunn test).
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for the development of agents which treat METH abuse and 
dependence. In line with these observations, applications of 
the HMT inhibitors like metoprine for routine clinical practice 
will offer additional insight into effective treatment for METH 
addiction and abuse.
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