Cysticercosis is the most common helminthic disease of the nervous system in humans. The clinical presentation of neurocysticercosis (NCC) is nonspecific and can mimic a wide array of primary central nervous system (CNS) disorders, making its diagnosis a challenge especially in endemic areas. The pathophysiology of episodic CNS manifestations of NCC is not well understood. We support the hypothesis that mechanisms used by cysticerci to escape the host’s immune system interfere with store-operated calcium entry (SOCE) pathways. This interference may modify brain excitability, leading to episodic manifestations like epilepsy and headaches.
Recent findings suggest that the store-operated calcium entry (SOCE) signaling pathway expressed in host tissues is downregulated by cysticerci ligands. SOCE regulates a vast array of cellular functions in excitable and non-excitable cells including modulation of neuronal excitability and regulation of synaptic plasticity. Inhibition of the SOCE signaling pathway alters synaptic plasticity and synchronization of cortical neuronal networks in vitro and in vivo. These modifications may lower seizure or headache thresholds, increasing the probability of developing these disorders. This hypothesis could be explored to improve our understanding of the mechanisms involved in episodic manifestations of NCC. If confirmed, potential therapeutic opportunities could be expected from pharmacological modulations of specific proteins in the SOCE signaling pathway.
Keywords: Neurocysticercosis; Epilepsy; Headache; Migraine; Pathophysiology; Store-operated calcium entry; STIM1; Calcium signaling/homeostasis
Published on: Jan 25, 2017 Pages: 1-6
Full Text PDF
Full Text HTML
DOI: 10.17352/jnnsd.000011
CrossMark
Publons
Harvard Library HOLLIS
Search IT
Semantic Scholar
Get Citation
Base Search
Scilit
OAI-PMH
ResearchGate
Academic Microsoft
GrowKudos
Universite de Paris
UW Libraries
SJSU King Library
SJSU King Library
NUS Library
McGill
DET KGL BIBLiOTEK
JCU Discovery
Universidad De Lima
WorldCat
VU on WorldCat
PTZ: We're glad you're here. Please click "create a new query" if you are a new visitor to our website and need further information from us.
If you are already a member of our network and need to keep track of any developments regarding a question you have already submitted, click "take me to my Query."